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Abstract— Delaunay-based derivative-free optimization, ∆-
DOGS, is an efficient and provably-convergent global opti-
mization method for the problems which has computationally-
expensive objection function and the analytical expression for
the objective function is not available. ∆-DOGS is a novel
optimization scheme in the family of response surface methods
(RSMs); however, it suffers from the curse of dimensionality
since the computational cost increases dramatically as the
number of design parameters increases. As a result, the num-
ber of design parameters in ∆-DOGS algorithm is relatively
low (n . 10). To avoid such problems, this paper proposes a
combination of derivative-free optimization, seeking the global
minimizer of an expensive and nonconvex objective function
f (x) and active subspace method, detecting the directions of
the most variability using evaluations of the gradient. The
contribution of other directions to the objective function is
bounded by a sufficiently small constant. This new algorithm
iteratively applied Delaunay-based derivative-free optimization
to seek the minimizer on the d-dimensional active subspace
that has most function variation. Inverse mapping is needed to
project data from active subspace to full-model for evaluating
function values. This task is overcome by solving an inequality
constrained problem that curves the response surface of the
objective function. The test results show that this strategy is
effective on a handful of optimization problems.

I. INTRODUCTION

In this paper, we consider a nonconvex optimization
problem as follows:

minimize f (x) with x ∈ B = {x|a≤ x≤ b}, (1)

where a and b are two vectors in Rn such that a < b, and
f (x) : Rn → R is expensive-to-compute. We seek a point
x ∈ B such that the function value of f (x) is less than or
equal to f0. Solving an optimization problem of the form
(1) is difficult and, for general functions, convergence can
only be guaranteed if the function evaluation set becomes
dense over the entire search domain, B, in the limit of an
infinite number of function evaluations [1], [2].

In this paper, for the purpose of derivation of our algo-
rithm, we thus focus our attention on problems in which
n-dimensional objective function f (x) varies most along a
few d directions, while the other n−d directions only have a
small contribution bounded by a sufficiently small constant
γ .
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The nonconvex objective function gained lots of interests
in engineering problems recently, such as the optimiza-
tion of the compliance properties of fabrics for improved
flow/structure interactions (reduced drag, reduced noise,
etc.) and hydrofoil design optimization. The hydrofoil op-
timization problem described in [3] represents a typical
challenge problem for this effort, as its objective function
f (x), which characterizes the lift/drag ratio of the foil,
is much more strongly dependent on some of the design
parameters than the others. This behavior is common and
challengeable in shape optimization since there is no closed
form of the objective function, the first-order and second-
order derivatives. The heavy cost of each function evaluation
computation restricts the number of function evaluations.
Therefore, the ultimate goal is to determine the global
minimum through as few function evaluations as possible.

For many dimension reduction problems, sensitivity anal-
ysis [4], [5] is a well-known method by ranking the input
parameters due to the measure of their contribution to the
objective function. However, some functions may have the
most variable directions that are not aligned with the coordi-
nate found by sensitivity analysis. And the computation cost
needed to study the importance of parameters may exceed
the available sources.

Principle component analysis [6] is another popular
method for dimension reduction by creating new artificial
coordinates that are linear combination of the observed
variables. PCA could keep as much variation as possible
instead of identifying the direction that has most varia-
tion of the objective function, which possibly passes the
global minimum region. However, derivative optimization
iteratively explores the basin of global minimum which is
not compatible with the variation of data points.

Locally linear embedding [7] identifies the low-
dimensional subspace when the high-dimensional data lie on
a manifold that embedded in high dimensional space. It first
determines the weights of linearly approximating the data
in the neighbors of available data points. And finally finds
a low-dimensional coordinates that best reconstruct those
weights. However, the subregion of original parameter space
is explored by the function values, which indicates that it is
required to design a strategy to project the data from low-
dimensional embedding back to original parameter space.
In Section III-B we propose a retransformation strategy by
solving a constrained minimization problem.

Under appropriate assumptions, it is guaranteed that
derivative-free methods could converge to a global optimum,



but in general they are computationally inefficient since
many more function evaluations are required compared
with derivative-based methods at local refinement. Response
surface methods (RSMs) are the most efficient globally-
convergent derivative-free optimization methods available
today. RSMs iteratively minimize a search function using an
interpolant of existing data points, known as the “surrogate”,
and a model of the “uncertainty” of this surrogate which
goes to zero at the function evaluations themselves. Effi-
cient global optimization (EGO) [8], optimization by radial
basis function interpolation in trust-regions (ORBIT) [9],
the Surrogate-Management-Framework (SMF) [10], and
Delaunay-based derivative-free optimization via global sur-
rogates (∆-DOGS) [11], [12], are modern examples of
RSMs.

The derivative-free scheme upon which the present work
is based on is ∆-DOGS, which is a generalizable family of
computationally-efficient RSMs developed by our group to
optimize low-dimensional and black-box problems of which
the objective function is both nonconvex and computation-
ally expensive. There are already a handful schemes in this
family, including schemes designed specifically for simple
bound constraints [13], linear constraints [11], [14], and
nonconvex constraints [12].

This paper combines the dimensionality reduction scheme
together with ∆-DOGS algorithm to minimize the high-
dimensional objective function that has most variation along
at most d-directions. We first apply gradient sampling to
obtain the active subspace. ∆-DOGS optimization scheme is
applied on the active subspace to identify a low-dimensional
minimizer that is potentially close to the global minimum
after projection. Then a new inverse mapping scheme is
proposed to transform the minimizer back to original param-
eter space by solving an inequality constrained minimization
problem. This new algorithm is global convergence-provable
and shows competitive performance in derivative-free global
optimization methods.

The paper is structured as follows: Section II briefly
reviews the essential ideas of [13], [14], which accelerates a
∆-DOGS search by coordinating it with a Cartesian grid over
parameter space that is successively refined as convergence
is approached. Section III explains the new optimization
scheme, which combines active subspace method with
derivative-free optimization scheme. Section IV analyzes the
global convergence property of the new algorithm under
appropriate assumptions. In Section V, the new algorithm
is applied to synthetic optimization problems to illustrate
its competitive performance. Conclusions are presented in
Section VI.

II. A BRIEF REVIEW OF ∆-DOGS

In this section we briefly review the essential ideas of ∆-
DOGS [13], [14]. Note that this paper focuses on variants
of these algorithms that leveraged by active subspace to
identify the directions in the parameter space that has
most variability; other variants of these algorithms, such

as implementing Cartesian grids to accelerate the conver-
gence rate discussed in [13], [14], and multivariate adaptive
polyharmonic splines discussed in [15]. Those modification
of Delaunay-based optimization could also be incorporated
into this framework.

∆-DOGS algorithm successively determines the location
where has the highest probability to achieve the function
value equal or less than the given target f0. This approach is
realized by minimizing the synthetic and cheap-to-establish
surrogate model sc(x), constructed by Natural Polyharmonic
Spline [16] p(x) and the uncertainty function e(x). The
approach is akin to the expected improvement [17] and
Bayesian optimization algorithms [18].

Definition 1: Take S as a set of N points {xi}N
i=1 over

the feasible domain L. Construct the Delaunay triangulation
∆ over the set S. The uncertainty function e(x) on each
Delaunay simplex ∆i is defined as

e(x) = R2
i −‖x− ci‖2, ∀ x ∈ ∆i. (2)

Here Ri and ci are the circumradius and circumcenter of the
hypercircumcircle of Delaunay simplex ∆i.

The uncertainty function approaches maximum within
each Delaunay simplex as far from the available data
points. In paper[11] several key properties of e(x) has
been discussed, including: (a) e(x) is Lipschitz continuous
and twice-differentiable within each Delaunay simplex; (b)
e(x)≥ 0 ∀x ∈ B and e(xi) = 0 ∀i ∈ {1, . . . ,N}.

Definition 2: Consider a set of N data points S = {xi}N
i=1

over the feasible domain B. Suppose the uncertainty function
e(x) is established within each Delaunay simplex as defined
by equation (2). The continuous search function sc(x) is
defined as follows:

sc(x) =

{
p(x)− f0

e(x) if p(x)≥ f0,

p(x)− f0 otherwise,
(3)

where p(x) is some smooth interpolating function such that
p(xi) = f (xi),∀i ∈ {1, . . . ,N}.

The interpolation p(x), truth function f (x) and continuous
search function sc(x) are illustrated in Fig. 1.

Definition 3: The Cartesian grid of level L for the feasible
domain B = {x|a≤ x≤ b}, denoted BL, is defined such that

BL =

{
x|xL = aL +

1
N
(bL−aL) · zL, zL ∈ {0,1, . . . ,2L}

}
The point x ∈ B would be quantized onto the grid BL as
xq which is nearest to x from the grid points. The quan-
tizer xq is not necessarily unique. Therefore, the maximum
quantization error at ∀x ∈ B to the mesh grid BL is defined
as

δL(x) = max
xq∈BL

|x− xq| (4)

Remark 1: At each iteration, Algorithm 1 either evaluates
a new feasible data point, or refines the mesh by increment-
ing L = L+1.

There are two possible termination scenarios for Algo-
rithm 1: either the target value f0 is achievable and ∆-
DOGS identifies a point x with function value f (x)≤ f0, or



Fig. 1: The essential elements of ∆-DOGS algorithm in
different iterations for 1D Schwefel function(30). The upper
figures contain: The solid black line indicates the truth
function f (x), the blue dotted line indicates interpolant
function p(x); The lower figures contain: The green dotted
line represents the continuous search function sc(x), as
defined in equation (3). The red circles are the minimizer
of sc(x) as known as the next data point to evaluate.

Algorithm 1 Strawman of ∆-DOGS, designed for minimiz-
ing f (x) ∈ B leveraging the target value f0.

0. Initialize k = 0, `, and the initial set of data points S0,
and calculate f (xi) for all xi ∈ S0.

1. Calculate or update an robust interpolation pk(x) over
the feasible domain B.

2. Calculate or update the Delaunay triangulation ∆k over
the data points Sk. Construct the uncertainty function
ek(x) for the points in Sk.

3. Find the minimizer xk of continuous search function
(3) in B.

4. Determine yk as the quantization of xk on BLk .
5. If yk 6∈ Sk, Sk+1 = Sk ∪ yk, and calculate f (yk); oth-

erwise, refine the mesh by incrementing Lk = Lk + 1.
Increase k = k+1.

6. Repeat steps 1-5 until a point x is found with f (x)≤ f0.

Algorithm 1 conducts infinite number of mesh refinement
iterations to get data points dense in the entire parameter
space. In the latter case, it is proved in [13] that the global
minimizer is determined as the mesh grid gets successively
refined. The quantization error δL would converges to zero
since there are only finite number of data points on each
mesh grid.

The Algorithm 1 presents a strawman form of the acceler-
ating ∆-DOGS with implementation of Cartesian grid from
the above concepts. Further details are presented in [13],
[14].

Despite that ∆-DOGS is a family of computationally
efficient schemes for globally exploring a large range of non-
convex problems through surrogate minimization, it suffers

from “the curse of dimensionality” as all derivative-free op-
timization schemes, and scales poorly with the dimension of
the problem. The dimension reduction algorithm proposed
below mitigates this issue.

III. DIMENSION REDUCTION BASED ON ACTIVE
SUBSPACE METHOD

A. Active Subspace method

In this section we briefly discuss the theory of active
subspace method [19]. Note that principle component analy-
sis implements the proper orthogonal decomposition on the
covariance matrix of original data. In this way PCA obtains
the most variate component that is a linear combination of
original coordinate system. Similar to principle component
analysis, active subspace method performs the proper or-
thogonal decomposition but on the covariance matrix of the
gradient of the objective function.

Consider the scalar function f on the n-dimensional
column vector x, whose variability is concentrated in d
directions. The gradient ∇ f (x) is also reshaped as a column
vector. Suppose the evaluated data points set is denoted as
S = (x1,x2, ...,xN),

fi = f (xi), ∇ f (xi) ∈ Rn, xi ∈X = [0,1]n (5)

The task is to identify the active directions that effectively
represents the most variability of f . Let ρ = ρ(x) be the
uniform probability density function. The covariance matrix
is estimated by randomly sampling the gradient in the
parameter space with Monte Carlo method. The estimated
covariance matrix is

C ≈ Ĉ =
1
M

M

∑
i=1

∇ f (xi)∇ f (xi)
T (6)

The active directions of the parameter space is determined
by performing the spectral decomposition on covariance
matrix which is symmetric and positive semidefinite.

C =WΛW T (7)

where W ∈ Rn×n and Λ is a diagonal matrix of descending
eigenvalues. The first d eigenvectors from W are selected
to form the active subspace. Notice that their corresponding
eigenvalues are relatively large, which means there are more
variability along the direction denoted by those eigenvectors.
Since we consider the objective function only varies along d
directions, the relatively small eigenvalues will be ignored.

From the assumption that the most variability of objective
function is along d directions in the parameter space, we
determine the gap in eigenvalues matrix Λ and partition
the eigenvectors matrix W and Λ. Up till now we have all
the essential elements to construct the active subspace. The
framework is described in Algorithm 2.

W =

[
W1︸︷︷︸

d columns

W2︸︷︷︸
n−d columns

]
, Λ =

[
Λ1

Λ2

]
(8)

Once the spectral decomposition of matrix C is acquired,
the original parameter x can be viewed as x =W T

1 y+W T
2 z,



Algorithm 2 Strawman of Active Subspace Method

0. Draw M = αk log(n) samples x j independently accord-
ing to the density function ρ .

1. For each x j, compute the gradient

∇ f (xi) =

[
∂ f
∂xi1

,
∂ f
∂xi2

, ... ,
∂ f
∂xin

]T

, i ∈ {1, ...,M}

.
2. Approximate by Monte Carlo sampling

C ≈ Ĉ =
1
M

M

∑
i=1

∇ f (xi)∇ f (xi)
T

3. Compute the spectral decomposition Ĉ =WΛW T . The
first d eigenvectors of Ŵ form the coordinate transfor-
mation matrix Ŵ1.

here y is the coordinates of active subspaces while z repre-
sents the inactive directions that function f does not vary
too much. Then we define the domain of active subspace as
follows.

Definition 4: Suppose X denotes the domain of original
parameter space. For ∀x ∈X , x = W T

1 y+W T
2 z. Then the

domain Y of active(reduced) subspace is defined as

Y = {y : y =W T
1 x,x ∈X } (9)

We could construct the interpolation g in reduced sub-
space to approximate the function f . The interpolation g
is built up by conditional expectation and will be talked in
details in Section III-B

f (x)≈ g(W T
1 x) (10)

B. Dimension reduction of ∆-DOGS

In this section, we consider identifying the location in the
feasible domain B with the function value less than or equal
to f0. The objective function only varies primarily along at
most d directions in the feasible domain.

Definition 5: The scalar function f (x) has at most d dom-
inant directions of the input (d < n). Suppose xD is the d-
dimensional column vector that represents the value of input
along d dominant coordinates. For ∀γ and ∀x,y ∈ Rn there
exists δ such that if ‖xD−yD‖< δ , then | f (x)− f (y)| ≤ γ .

The goal of dimension reduction scheme of ∆-DOGS
algorithm is to identify the global minimum of the objective
function which only has most variation in a few d directions.
This task is completed in three phases.

1. First phase: Active Subspace. In first phase, we
apply the active subspace method to determine the d
directions that have the most variability of the objective
function. The original data set S would be mapped
to the d-dimensional smaller set active subspace Y .
Each coordinate of the active subspace Y is a linear
combination of original parameters in X .

2. Second Phase: ∆-DOGS. In second phase, the regular
∆-DOGS is performed on the active subspace Y to

determine the potentially minimizer yr ∈Rd . This step
aims at providing a priori knowledge about which
subregion of the parameter space X might have global
minimum. Notice that this step avoids the huge amount
of memory storage to build the Delaunay triangulation
in high dimensional space as needed for ∆-DOGS.

3. Third Phase: DR-∆-DOGS. To make use of this
minimizer, we define a inverse mapping to transform
the point from d-dimensional active subspace Y to
n-dimensional full-model X . This inverse mapping
requires another response surface constructed with data
points in X .

For second phase, we first construct a new interpolation
that is needed for ∆-DOGS optimization in active subspace
Y . We implement Natural Polyharmonic Spline interpolant
strategy which has been widely used to interpolate scat-
tered data by minimizing the measure of curvature of
the interpolant. The approximate value f̂ (xr) at the image
of evaluated points after mapping is calculated based on
conditional expectation of the interpolant value.

Definition 6: The value of the interpolation in reduced
subspace is defined as

Pr(y) = f̂ (y) =
1
m

m

∑
i=1

f (xei)

subject to W T
1 xei = y, y ∈ Y , xei ∈X

(11)

The approximate function value f̂ (y) is the expectation of
the inverse image x ∈ S in original parameter space X .

Notice that the reduced model Y is also a manifold,
thus another mesh grid scheme is applied in the reduced
subspace. Each time the mesh grid L in original parameter
space X get refined, the mesh grid ` in reduced subspace
Y will also be refined to accelerate the convergence of ∆-
DOGS to the global minimum in reduced model Y .

Definition 7: For the current work we consider one-
dimensional active subspace. Since active subspace is linear
mapping, the range of parameter y ∈ Y is simple to deter-
mine in one-dimensional space, denoted as a′ and b′. The
Cartesian mesh grid in active subspace Y , denoted as B`,
is defined as

B` =

{
x|xι = a′ι +

1
N
(b′ι −a′ι) · zι , zι ∈ {0,1, . . . ,2`}

}
By implementing ∆-DOGS optimization, we obtain the

minimizer yr of continuous function sc(x) in reduced sub-
space, which works as a priori knowledge to indicate which
subregion of the parameter space potentially has the candi-
date minimizer.

Since the function evaluations are performed in original
parameter space X , it is needed to approximate yr in
original parameter space X . The normal way to overcome
this task is by calculating W1W T

1 yr. However, W1W T
1 yr is

actually a point that lies on d-dimensional manifold in the
original parameter space X . It is obvious that this approach
could possibly lost some amount of function behavior. Thus
we propose an inverse mapping that retransform yr to
original parameter space X based on the goal of minimizing



the surrogate of objective function in X [20]. This surrogate
has the property to This inverse mapping is constructed
by solving a inequality constrained minimization described
below.

In inequality constrained optimization, the objective func-
tion is defined as discrete search function sd(x) which has
a similar structure to continuous search function. sd(x) is
constructed by the interpolant function P(x) in X and a new
uncertainty function u(x), the distance-uncertainty function.
The uncertainty function u(x) is the distance of x to its
nearest neighbor in the evaluated points set S defined as
follow.

Definition 8: Suppose S = {x1,x2, ...,xN} denotes the
evaluated points set in original parameter space. For ∀x∈X
the uncertainty function u(x) is defined as

u(x) = dist(x,S) = min
z∈S
‖x− z‖ (12)

Then the search function sd(x) is defined as

sd(x) =
P(x)− f0

dist(x,S)
=

P(x)− f0

minz∈S ‖x− z‖
(13)

It is obvious that the distance-uncertainty function u(x)
is continuous and differentiable inside the Voronoi cell of
every evaluated point x ∈ S. The key properties of u(x) are:
1) u(x)≥ 0 ∀x ∈X , and u(xi) = 0 ∀xi ∈ S, i = {1, . . . ,N};
2) Since the point-wise distance in X is bounded, and
maxu(x) is achieved on the boundaries of box domain B,
thus u(x) is Lipschitz continuous with Lipschitz constant Lu.

‖u(x)−u(x′)‖ ≤ Lu‖x− x′‖, ∀x,x′ ∈X (14)

Definition 9: Determine the minimizer of ∆-DOGS yr,
and establish the discrete search function as stated in Def-
inition 8. Given a slack tolerance variable ε , the inequality
constrained minimization is defined as follow

min sd(x) =
P(x)− f0

dist(x,S)
with ‖W T

1 x− xr‖ ≤ ε

(15)

This inequality constrained optimization is solved by
Sequential Least-Square Quadratic programming. The initial
guess is defined by x0 = W1W T

1 yr. The slack variable ε is
a user-defined variable that how much amount of variation
that we could tolerate. The larger ε indicates that we allow
searching more globally in X . A detailed convergence
analysis would be performed in the following Section IV.

Up till now we have presented all the essential elements of
new algorithm. The framework of new algorithm is showed
in Algorithm 3.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of
Algorithm 3. Under the appropriate assumptions, we will
establish the following property:

Target achievability: If the target is achievable, the algo-
rithm will either: (a) find the feasible point with objective

Algorithm 3 Dimension Reduction of ∆-DOGS

0. Initialize k = 0, L, ` and the initial set of datapoints S0,
and calculate f (xi) for all xi ∈ S0.

1. Calculate or update the interpolating function pk(x) for
all the points in Sk.

2. By Algorithm 2, calculate or update the uncentered
covariance-like matrix C and the coordinate transfor-
mation matrix W k

1 .
3. By Definition 6, establish the interpolating function

Pk
r (x) in reduced model, minimize the continuous

search function (3) to obtain yk
r as a minimizer in

reduced model.
4. Solve the inequality constrained minimization (15) to

obtain xk as a minimizer of the response surface.
5. Determine zk as the quantization of xk on BLk . If zk /∈ Sk,

Sk+1 = Sk∪zk; otherwise, refine the mesh by increasing
Lk = Lk +1 and `k = `k +1. Increase k = k+1.

6. Repeat steps 1-5 until a point x is found with f (x)≤ f0.

function equal or less than the target f0 in a finite number
of iterations, or (b) generate an infinite sequence of points
that contain a point with function value equal to f0.

First we establish the following theorem based on Def-
inition 5: As long as the perturbation of the d dominant
coordinates are sufficiently small, the change of values in
active subspace interpolant is also small enough.

Theorem 1: Suppose the perturbation of the dominant
directions is small, ‖xD− x′D‖ ≤ δ . Let x = W1y+W2z and
x′ = W1y′+W2z′. Then the difference of the interpolant in
active subspace is also small and it is Lipschitz with constant
LPr .

|Pr(y)−Pr(y′)| ≤ LPr‖y− y′‖ (16)

where LPr =
2C1(1+N−

1
2 )ε0+γ

δ0
.

Proof : From assumption 5, the change of objective only
varies on d main directions, recall the spectral decomposi-
tion on matrix C in Algorithm 2, the last n−d eigenvalues
are sufficiently small. Suppose there exists a sufficiently
small value ε0 such that

n

∑
i=n−d

λi ≤ ε0 (17)

Suppose W1 is the first d orthonormal eigenvectors of
matrix C. By equation (11), we have

Pr(W T
1 x) = f̂ (W T

1 x) = E[ f (x))] = E[ f (W T
1 y+W T

2 z] (18)

As sufficiently many data points are collected, the in-
terpolant Pr(y) is a realization of response surface that
approximate the objective function f . From Theorem 4.4 in
[19] and equation (17), the difference of objective function
and reduced interpolant is bounded by

| f (x)−Pr(W T
1 x)| ≤C1(1+N−

1
2 )(λn+1 + ...+λm)

1
2

≤C1(1+N−
1
2 )ε0

(19)



Here m is the number of data points in full-model to
approximate the reduced interpolant value at W T

1 x.
From the assumption 5, for ∀x,x′ ∈X such that ‖xD−

x′D‖ ≤ δ , we derive that

|Pr(y)−Pr(y′)|= |Pr(W T
1 x)−Pr(W T

1 x′)|
= |[Pr(W T

1 x)− f (x)+ f (x)]− [Pr(W T
1 x′)− f (x′)+ f (x′)]|

≤ |Pr(W T
1 x)− f (x)|+ |Pr(W T

1 x′)− f (x′)|+ | f (x)− f (x′)|

≤ 2C1(1+N−
1
2 )ε0 + γ

(20)

As the variation of objective function along n−d directions
goes to zero, the value of ε0 also goes to zeros. Therefore,
with a small perturbation in the d dominant coordinates of
the input x, the difference of the interpolant Pr(x) in active
subspace also has a relative small change.

Suppose the difference between ‖y− y′‖ = δ0, then the
equation (20) can be rearranged as

|Pr(y)−Pr(y′)| ≤
2C1(1+N−

1
2 )ε0 + γ

δ0
‖y− y′‖

≤ LPr‖y− y′‖
(21)

Hence we showed that the interpolant Pr(y) in active
subspace is also Lipschitz continuous. While the uncertainty
function u(x) also keeps the properties such as continuous
and twice-differentiable as needed to prove the target achiev-
ability in [11]. It is established in [13] that Algorithm 1 is
capable to converge to the point with the target value f0.
The results is shown in the Theorem 2.

Theorem 2: Suppose the Definition 5 holds and con-
structs the Lipschitz continuous reduced interpolant Pr(x)
as stated in Definition 6. Algorithm 3 will converge to the
global minimum of the feasible domain Y .

In active subspace Y , ∆-DOGS could approach the target
value f0, i.e. for sufficiently many iterations k, we have

|Pr(xk
r)− f0|< ε2 (22)

Finally we prove that the Algorithm 3 is also target
achievable in original parameter space X under appropriate
assumptions.

Theorem 3: Suppose the objective function has most vari-
ability along d directions and assumption 5 holds. Suppose a
target value f0 and box domain B are given. The Algorithm
3 is target achievable if the reduced interpolant Pr(x) is
Lipschitz continuous.

Proof : Suppose the Algorithm 3 has been run sufficiently
many iterations such that the target is achieved at iteration k
in active subspace. Suppose at iteration k, xk

r is the minimizer
of ∆-DOGS scheme and xk is the minimizer of Algorithm
3. The function value f (xk) is evaluated at iteration k.

Then according to equation (22), we have

|Pr(xk
r)− f0| ≤ ε2 (23)

Since xk is the minimizer of the inequality constrained
minimization, xk satisfies the inequality constraint ‖W T

1 xk−

xk
r‖ ≤ ε . By Theorem 1, the active subspace interpolant is

Lipschitz constant with LPr , we have

|Pr(W T
1 xk)−Pr(xk

r)| ≤ LPr‖W T
1 xk− xk

r‖ (24)

From equation (19), we derive that

Pr(W T
1 xk)≤ f (xk)+C1(1+N−

1
2 )ε0 (25)

From equation (23), we have

Pr(xk
r)≥ f0− ε2 (26)

Combining equation (24), (25) and (26), and the target is
achievable by ∆-DOGS,

LPr‖W T
1 xk− xk

r‖ ≥ |Pr(W T
1 xk)−Pr(xk

r)|

≥ |( f (xk)+C1(1+N−
1
2 )ε0)− ( f0− ε2)|

≥ | f (xk)− f0|+ |C1(1+N−
1
2 )ε0 + ε2|

(27)

Rearrange the above equation then we derive that

| f (xk)− f0| ≤ LPr‖W T
1 xk− xk

r‖− |C1(1+N−
1
2 )ε0 + ε2|

= LPr ε + |C1(1+N−
1
2 )ε0 + ε2|

(28)

Thus as long as we pick sufficiently small value of
ε0, ε and ε2, the difference between f (xk) and f0 would
be sufficiently small. The target value is achievable for
Algorithm 3 with the above appropriate assumptions.

V. RESULTS

In this section, the new dimension reduction algorithm
has been applied to the following synthetic function to test
the performance. The first test function is nonconvex and
the second test function is convex. For the following test
problems, the initial number of subintervals for each coor-
dinate is set to be 8. The Algorithm 3 continues until 4 times
of mesh refinement are performed. The discretization error
would be less than 0.002 when the algorithm terminates,
i.e. ‖xk− x∗‖ ≤ 0.005. We initialize ε = 0.2 and iteratively
reduce it to zero. For each iteration we reduce it by 0.001
until ε = 0.

The performance of the DR-∆-DOGS algorithm is mea-
sured by the number of function evaluations and the relative
error defined as follows. Suppose the best minimum point
obtained until iteration k is defined as the candidate point
at iteration k. Let fmin denotes the best minimum obtained
by optimization and f0 denotes the global optimum value.
The relative error is defined as

ε =
fmin− f0

| f0|
, y0 6= 0

The initial data points in S0 are constructed with 3n+3
points that are uniformly drawn from the parameter space
X .

The number of dimension of active subspace is set to
be one. And the active subspace is obtained by uniformly
random sampling the gradient of the objective function.



Fig. 2: f1(x) on Candidate point.

Fig. 3: Distance to global minimum.

To approximate the first d eigenvectors of C, [19] rec-
ommended to have M samples of gradient sampling. Here
M = αd log(n) and α is an oversampling factor that chosen
as 10, the other parameters are set as d = 1 and n = 10. As
we have mesh grid refined, we would increase the gradient
samples as there are more grid points in the parameter space.
Thus the number of gradient sampling is defined as

M = αd log(n)Lk (29)

The first test function is constructed by Schwefel function
and quadratic function. The first component of (30) is
constructed by Schwefel function and the rest coordinates
are quadratic that have small contribution to the objective
function. The first test function is defined as follows.

f1(x) =−
x1

2
sin(500|x1|)+

10

∑
i=2

(0.001) · i · x2
i (30)

It has several properties: (a) It has most variability along the
coordinate x1; (b) It is continuous, nonconvex and twice-
differentiable; (c) It is defined on a box domain x ∈ [0,1]10.
(d) The minimizer x∗ = [0.8419,0, ...,0] and the target value
f0 =−1.675936. Apply Algorithm 3 on the first test function
with n = 10. The target value f0 =−1.6759 is achieved by
103 iterations with relative error 0.025%. The distance of
candidate point to the global minimizer also converges to
zero as shown in Fig. 2 and Fig. 3.

Fig. 4: f2(x) on Candidate point.

Fig. 5: Contour plot of the most variability of
f2(x) on the manifold constructed by coordinates
x1 and x2.

The second test function is a combination of exponential
function, Rosenbrock function and quadratic function. The
first component of (31) is the exponential function of x1 and
x2. The second component is similar to Rosenbrock function
but we decrease the variation of quadratic term by reducing
the coefficient from 100 to 10. The third component is
quadratic function of the rest 8 coordinates that have small
contribution to the objective function.

f2(x) = e0.2x1 + e0.2x2 +10(x2− x2
1)

2+

(x1−1)2 +0.001 ·
10

∑
i=3

(xi−0.1 · i)2

(31)

The second test function has several properties:(a) The most
variability direction is along the combination of two coor-
dinates x1 and x2;(b) It is continuous, convex and differen-
tiable; (c) The minimizer is x∗ = [0.512,0.723,0.3,0.4, ...,1]
and the target value f0 = 2.34128. The contribution of the
first two components are illustrated in Fig 5. The target value
f0 is achieved by 413 iterations with relative error 0.0532%
in Fig. 4

Table I shows the results of applying new DR-∆-DOGS
to the above two test problems.



Test function No.
param.

stopping
criterion

final
error (ε)

No. Eval.
for 1%
error

(30) 10 146 0.025% 52
(31) 10 465 0.0532% 246

TABLE I: Experiment results of Algorithm 3.

VI. CONCLUSIONS

This paper introduces a modification to the Delaunay-
based derivative-free optimization algorithm scheme ∆-
DOGS as proposed in [13], [14], identifying the active
subspace and perform dimensionality reduction on the active
subspace. The new scheme, Algorithm 3, has three main
modifications as compared with the original ∆-DOGS algo-
rithm:
• In this paper we have extended Delaunay-based
derivative-free algorithm ∆-DOGS to high dimensional
problem. Previously ∆-DOGS is restricted by the num-
ber of design parameters because of the unaffordable
computational cost to construct the Delaunay triangu-
lation. Under appropriate assumptions on the objective
function, the new Algorithm 3 is convergence provable
to identify the point on which the objective function
achieves the target value.
• We proposed a new inverse mapping method that
minimizes the global surrogate subject to inequality
constraint. This optimization links these two subspaces
while enforcing the points x in full-model projected to
the minimizer of the response surface in reduced space
yr.
• The objective function could have different variance
along different coordinates. However, ∆-DOGS scales
poorly with the dimension of the objective function be-
cause it treats each coordinate has the same importance
in their contribution to the function. This new algorithm
could mitigates this effect by projecting the original
parameter space X to the active subspaces on which
the coordinates all have approximately equal variance.

In future work, this framework will be applied to the
application-based problems with objective function with its
most variability along more than one directions. Increasing
the dimension of the active subspace could make current
algorithm handle more complicated objective functions. The
vertices of active subspace Y could be found by algorithm
provided in [21] subject to linear mapping. And the new
scheme will be applied to hydrofoil shape optimization
problem [3] with seven parameters. In our previous work
we presented a hybrid optimization scheme that combined
Delaunay-based derivative-free algorithm and a derivative-
based local optimization scheme to accelerate local conver-
gence in parameter space [22]. The presented dimension re-
duction technique for Delaunay-based optimization scheme
will be incorporated into ∆-DOGS family of schemes [12],
[11], [13] to enable them to handle problems with more than
ten variables.
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